

CASE STUDY

TUBING INTEGRITY EVALUATION BY **STT** IN A VERTICAL OIL PRODUCER WITH HIGH H_2S ENVIRONMENTS

Location: Middle East

Well type: vertical oil producer

Challenge:

The integrity of 3 1/2" tubing in a high H_2S environment raised concerns due to the corrosive nature of the gas, which could lead to severe corrosion and potential rupture during replacement operations.

Objectives:

To evaluate the structural integrity of the tubing and localized corrosion with the highest accuracy and precision, ensuring operational safety and minimizing risks during the replacement process.

Solution:

STT was proposed as the optimal solution for assessing tubing conditions in a high H_2S setting. In addition, a client requested to run a conventional corrosion logging tool for comparison.

Segmented Thickness Tool (STT):

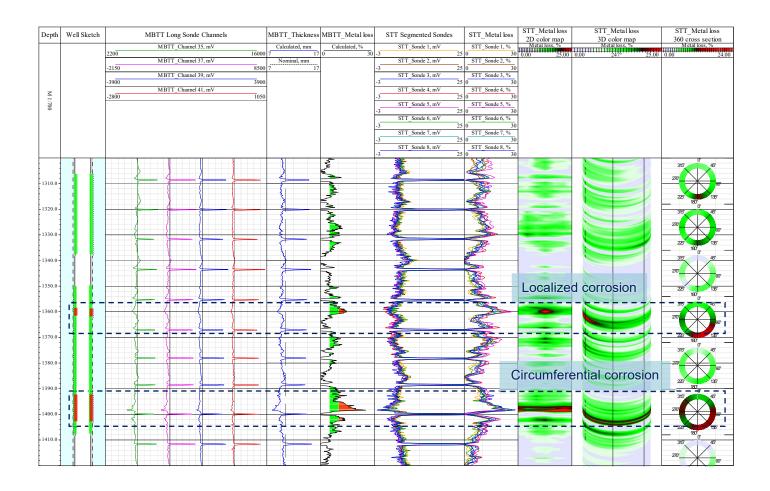
- Employs electromagnetic field decay analysis to detect localized corrosion and metal loss.
- Equipped with 8 high-resolution miniature sensors distributed around the tool's circumference.
- Provides 360° segmented evaluation of the tubing, with each sensor covering a 45° segment for a detailed assessment.

Advantages:

- Precise identification of localized areas of severe metal loss.
- Higher accuracy and resolution using advanced segmentation capability compared to conventional corrosion evaluation tools providing only average circumferential metal loss.

STT tool ensures a thorough and reliable analysis of the tubing, safeguarding against rupture during the replacement process. This minimizes risks while meeting integrity assessment requirements in challenging corrosive environments.

CASE STUDY


TUBING INTEGRITY EVALUATION BY **STT** IN A VERTICAL OIL PRODUCER WITH HIGH H_2S ENVIRONMENTS

Results

Based on MBTT data two major corroded areas were localized at 1358.0-1361.0 m and 1395.0-1399.0 m with 13% and 26% of an average circumferential metal loss respectively. The STT results confirmed the MBTT results, however, the area at 1358.0-1361.0 m was identified as a localized corrosion zone with a maximum metal loss level of 27%, while the area at 1395.0-1399.0 m showed a more uniform distribution of corrosion around the circumference with a slight increase of metal loss up to 29%.

Major outcomes

- Localized zone of circumferential corrosion was discovered at 1395.0-1399.0 m
- This zone should be considered as a major weak point during the tubing retrieving operations

