HIGH-RESOLUTION TEMPERATURE TOOL

The High-Resolution Temperature Tool (HRT) is a portable and rigid solution for detailed analysis of the downhole temperature profile in vertical, deviated, and horizontal wells. The HRT could be used for numerical temperature modeling such as North Side T-FLOW technology. The tool is independently programmable for the duration of logging and fully compatible with other North Side PL tools and modules. It is available in both memory and SRO modes.

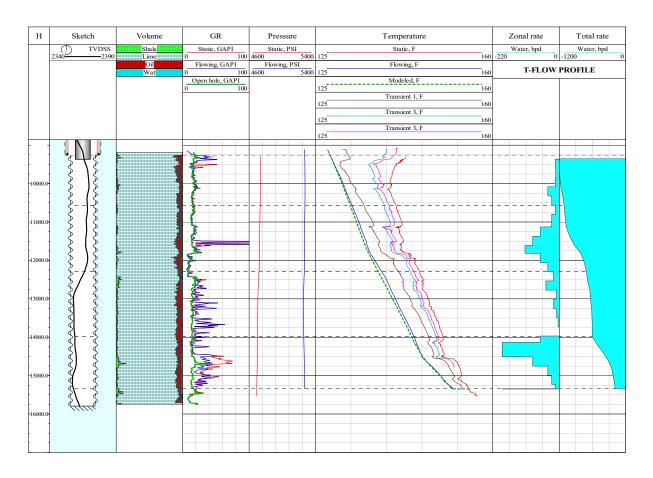
Applications

- Construction of detailed production/injection profiles related to reservoir flow based on numerical temperature modeling (T-FLOW technology)
- Regular high-resolution temperature surveys

Advantages

- Rigid, compact, and portable less chance of damage or lost in hole
- 100% data acquisition assurance
- Reliable accuracy and resolution

Tool Specifications	
Accuracy	0.1°C
Resolution	0.001°C
Sensor type	Platinum/Exposed
Maximum operating pressure	14,500 PSI (100 MPa)
Maximum operating temperature	150°C (304°F)
Tool OD	1.50/1.65 in (38/42 mm)
Tool length	1.3 ft (0.4 m)
Tool weight	4.4 lbs (2.0 kg)
Connections	15/16 SR
Operational time in memory mode	Over 100 hrs
H ₂ S resistance	6% standard (25% optional)
Surface read-out / Memory	Both



HIGH-RESOLUTION TEMPERATURE TOOL

Precise localization of temperature changes in the wellbore as well as behind the casing, inside the formation related to the reservoir.

